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A B S T R A C T

The objective in this paper is to largely review, but also give new insight into, the recent development of a novel
paradigm for finite element analysis. The approach enables much easier meshing than usually performed for
finite element analysis and then the computationally efficient solution of the finite element model. The im-
portant aspects of the paradigm are the automatic meshing on any given geometry (typically given by use of a
CAD program or a computerized scan) with the use of overlapping and regular finite elements – hence the
acronym AMORE for Automatic Meshing with Overlapping and Regular Elements. We summarize the basic steps
used in the paradigm, give the basic equations to formulate the overlapping elements, discuss specific attributes,
give some applications and conjecture on the further development and use of the solution scheme. Our dis-
cussion is based on previously published work with a focus on simplifying the formulation of the overlapping
elements, providing novel insight, and suggesting a notation. The paradigm has so far only been applied in the
linear analyses of solids, however embodies significant potential for general and wide use in computer-aided
engineering.

1. Introduction

Finite element analyses are now abundantly performed for en-
gineering designs and in scientific studies. For such analyses, in com-
puter-aided engineering (CAD), a program may be used to generate the
geometry, which is “cleaned up”, and then a finite element mesh is
spanned [1]. Alternatively, another description of the geometry, as for
example obtained from a three-dimensional (3D) computerized scan in
the medical and building industries, may be used and meshed. Much
attention has been focused on the effort of meshing in order to render
the process highly automatic. Various meshing programs have been
developed and are offered as stand-alone tools, like HyperMesh and
Gmsh [2,3], or as part of widely-used finite element analysis programs,
like ANSYS, SIMULIA, NX Siemens, and ADINA.

However, while much effort has been expended to obtain efficient
meshing programs for finite element analysis, there are still difficulties
to reach, in general, effective meshes for a specific analysis. For this
reason, meshless methods have been proposed for many applications,
see for example [4–7] and the isogeometric analysis approach has been
abundantly researched, see for example [8–10]. Meshless procedures
require little computational effort to discretize the continuum, how-
ever, the numerical integration in a reliable procedure to obtain the
governing equations is computationally very expensive, often

prohibitively so. Hence these schemes are hardly used in engineering
practice. The isogeometric analysis approach has been researched to
enable more effective finite element analysis when a specific CAD
geometry is given. In this approach the specific CAD functions used for
establishing the geometry are also employed to formulate the finite
element governing equations.

Our experience in finite element analysis is that low-order elements
are widely preferred, and widely used, specifically the 4-node quad-
rilateral elements for two-dimensional (2D) solutions and corre-
sponding 8-node elements for 3D solutions. The highest-order elements
widely used are probably the 10- and 11-node tetrahedral elements for
3D analyses. These elements are direct extensions of the too stiff 4-node
tetrahedral element used efficiently in 3D free form meshing.

We have focused on the development of a novel meshing approach
with the use of mostly undistorted low-order regular, traditional ele-
ments and the use of overlapping elements [11–16]. The reason for
using “overlapping elements” is that highly distorted overlapping ele-
ments can be employed efficiently. Therefore, it is possible to mesh
much of the geometry in an effective manner with traditional finite
elements of undistorted geometry (for which these elements show best
performance [1]) and use only in some regions the overlapping ele-
ments. This is the premise of the AMORE paradigm, using Automatic
Meshing with Overlapping and Regular Elements.
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Of course, overlapping grids have been used for some time in CFD
solutions, like in chimera overset-grid schemes [17–20]. However, in
those solutions, distinct grids of finite volumes or finite differences are
separately generated and then overlaid to cover the complete con-
tinuum. The approach is like gluing grids together over parts of their
surfaces, with a gluing algorithm. The use of the AMORE scheme in
finite element analysis is quite different and offers much more gen-
erality.

Our objective in this paper is to describe the AMORE paradigm, give
the formulations of some overlapping finite elements with novel in-
sights in the solution scheme, and suggest a notation to be used in
further research. We present some illustrative applications and con-
jecture that we see the paradigm as a powerful procedure for general
finite element analyses of solids, shells, fluids and multi-physics pro-
blems. However, there are many outstanding research tasks that need to
be tackled first to render the solution scheme very general and widely
applicable.

We focus on a summary of the paradigm with new insights. Hence
the paper is largely a review paper specific to the paradigm we have
worked on and we draw considerably on the material already presented
in Refs. [12–16].

2. The AMORE paradigm

The AMORE scheme is given by the following algorithmic steps:
Step 1: A mesh of cells is spanned over the geometry to be analyzed;

hence the geometry is immersed in a mesh, usually a Cartesian mesh
but it could be a curvilinear mesh as well. In 3D analysis, the sides of a
cell are of lengths Δx, Δy, Δz. Unless the sides are constant in lengths
and for a rectangle/ brick, the cells are geometrically distorted. Since in
finite element analysis, undistorted elements are most effective, it is
frequently best to use rectangular cells of constant Δx, Δy, Δz. However,
in practice, local mesh refinements may then be needed.

We emphasize that the geometry to be analyzed could be the output
from any CAD program or been obtained by any other means, like from
a 3D computerized scan.

Step 2: The boundary of the geometry is meshed. In 2D analyses, the
boundary lines are meshed using two-node straight lines, and in 3D
analyses, the boundary surfaces are meshed using 3-node triangular flat
facets. In some geometry descriptions, two-node lines and triangular
facets are already used to define the geometry and hence do not need to
be created in this step. The lines and facets can vary in size and are
automatically adjusted in size to accurately capture the geometry. The
sizes of lines and facets are independent of the values Δx, Δy, Δz and are
generated to “neglect or span over” deficiencies in the geometry de-
scription, when present, like gaps that provide a non-water tight geo-
metry. This boundary representation represents a “cleaning-up” of the
geometry and is an important ingredient, which in practice should be
programmed to be automatic but also be available for the analyst to
steer. Algorithms for this step are largely available but could be im-
proved.

A key is here that a mesh of lower dimension is spanned eliminating
geometry defects and the 'entities' in that mesh can be quite distorted
and in size independent of the values of Δx, Δy, Δz (used for the
Cartesian mesh) because the overlapping finite elements employed in
the next steps are quite distortion-insensitive.

Step 3: All cells of the Cartesian mesh spanned in step 1 that lie
outside the discretized boundary of the geometry or cut that boundary
are removed. The remaining cells are converted into low-order regular
finite elements. The result is that there are regions of the discretized
geometry which are not covered by finite elements.

Step 4: The empty regions obtained in Step 3 are filled in with
overlapping and coupling finite elements. The ideal case of using
overlapping elements in the AMORE paradigm is schematically de-
picted in Fig. 1 where disks and undistorted quadrilateral elements in
2D analyses (spheres and brick elements in 3D analyses) are

overlapping [11]. However, to achieve this generality requires further
research to reach a computationally efficient scheme.

A more direct and geometrically simpler way to proceed is shown in
Fig. 2 where, for the 2D analysis, we use for the uncovered regions
simply a triangular grid [12]. Here the overlapping elements are
polygonal elements that are geometrically not identified in the figure
but that overlap to form the interpolation functions for the triangular
elements shown in the figure. As we discuss below, the nodes of the
triangular elements are used as the centers of disks (tetrahedral ele-
ments and spheres in 3D analyses). The key is that the simple triangular
finite elements can be highly distorted without losing their predictive
capabilities. The same property holds for quadrilateral elements and in
3D analyses for tetrahedral and brick elements. Hence an efficient
meshing using these elements can be performed.

Figs. 3–5 show the steps of analysis using the AMORE scheme for
the geometry obtained using a computer-aided design program. The
geometry pertains to a cantilever with holes. We note that a Cartesian
grid is spanned to contain the complete geometry of the structure, that
the boundary of the geometry is discretized with the removal of geo-
metry defects, that the cells not entirely inside the boundary dis-
cretization are removed (additional cells are also removed to enable the
placing of coupling elements), that the remaining cells are turned into
regular finite elements, and that the empty space is filled with over-
lapping and coupling finite elements. We discuss the stress solution
results in Section 4.1.

Fig. 1. AMORE schematically for the analysis of a bracket; (a) geometry; (b)
mesh used showing only some overlapping elements.
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The geometry in this example solution is based on using a CAD
program; however, for the AMORE scheme the geometry could, for
example, also have been obtained from a computerized scan.

While we focus in this paper on the overlapping elements and
coupling schemes used in Fig. 2, the basic concepts are also applicable
to formulating other overlapping elements; however, such formulations
may require more research.

3. Formulation of overlapping and coupling elements

In this section we give the formulation of the finite elements that we
so far used in the AMORE scheme. The regular (or traditional) elements
are those used widely and we need to only recall that these elements are
optimal in their performance when geometrically undistorted [1].
Hence we only need to focus on the formulation of the overlapping
finite elements and their coupling to the regular elements.

3.1. The overlapping elements

For clarity of exposition, we consider the 2D analyses of solids and
show figures for that case, but the equations can be directly extended
for the analysis of 3D problems [14].

In principle, for 2D analyses, the use of 3-node triangular elements
is quite natural but these elements can hardly be used efficiently in
certain practical analyses because they are too stiff to solve bending-
dominated problems. Instead, the use of 4-node quadrilateral elements
is preferred but even these elements should not be geometrically dis-
torted [1]. In the text below, we describe first in detail new 3-node
triangular elements that are given by the overlapped regions of over-
lapping polygonal elements. The same concepts can be used for the
formulation of new 4-node quadrilateral elements, and the corre-
sponding 3D elements.

The overlapping element formulation given below embodies some
basic and key concepts:

• We focus on a grid of nodes generated over the domain to be ana-
lyzed using the overlapping finite elements. Considering the 3-node
element, the grid represents the analysis domain as a collection of 3-
node triangular finite elements.
• The new 3-node finite elements are obtained from the “overlapped
regions” of polygonal elements.
• To construct the interpolation functions for the triangular 3-node
elements, we place spheres of suitable radii, here disks in 2D ana-
lysis, like in the method of finite spheres [5], at each of the nodes of
the 3-node elements; each disk “carries” its Shepard function.
• With the placing of the spheres, each node carries polynomial (or
other suitable) nodal degrees of freedom like in the method of finite
spheres.
• We interpolate in an effective manner, using polynomials, the
Shepard function of each sphere. This interpolation is important to
only have polynomials to integrate for the element stiffness and
mass matrices.
• The spheres of the nodes interact, because they overlap in the region
of the 3-node triangular element.
• We interpolate the nodal contributions linearly over the 3-node
triangular element, like in the traditional finite element solution.
• The final interpolation functions over each 3-node triangular ele-
ment provide a compatible displacement field over the complete
domain.

Fig. 2. AMORE used in the problem of Fig. 1, using triangular basic elements for the overlapping polygonal elements.

Fig. 3. Cantilever plate in plane stress conditions (E=200×109,v=0.3,
thickness= 1.0), radii of holes= 2 and 3; quadratic tangential traction;
p=1000.

Fig. 4. A CAD representation of the cantilever plate; three geometrical im-
perfections.
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• To form the governing element stiffness and mass matrices of the
element assemblage we only integrate contributions over each of the
3-node triangular elements, just like in traditional finite element
analysis.

The same basic and key concepts apply also to the formulation of
general 4-node quadrilateral elements. Of course, then a grid of 4-node
elements, instead of 3-node elements, is used to span the geometry to be
analyzed. In a similar manner the formulation of 3D elements is tackled.

The above procedure renders the formulation effective because,
firstly, the predictive capability of the triangular element is distortion-
insensitive, secondly, only polynomials are used in the formulation
enabling efficient numerical integration, and thirdly, the bandwidth
given by nodal interactions is as in traditional finite element analysis. Of
course, the actual bandwidth is, in addition, given by the degrees of
freedom at each node.

3.1.1. Triangular elements from the overlapping of polygonal elements
Consider the triangulated region in Fig. 6. For node I, we consider

the five triangular 3-node elements coupling into that node to make up

the 6-node polygonal element. For node L, we have six 3-node elements
to make up a 7-node polygonal element, and for nodeM, we have seven
3-node elements to make up an 8-node polygonal element. Each node in
this mesh is therefore the center node of a polygonal element of more
than 3 nodes. In Fig. 6, the polygonal elements with center nodes I, L
and M overlap on the basic 3-node element I-L-M.

The interpolation used for the overlap region I-L-M (the 3-node
element) is given by

= + +h h hu x x x x( ) ( ) ( ) ( )I I L L M M (1)

where the hI, hL, hM are the usual finite element interpolation functions
of the traditional 3-node element. Note that the interpolation in Eq. (1)
provides for continuity of the displacement field over the complete
analysis domain by an appropriate choice of I, L, M.

We identify the region I-L-M as a 3-node element given by the
overlapping of the three polygonal elements with center nodes I, L and M,
see Fig. 6. The aim is to establish functions I, L, M that are con-
tinuous over the 3-node elements, from element to element, that render
the 3-node element I-L-M effective for stress predictions and render it
distortion-insensitive. The key for this element behavior is to have

Fig. 5. The steps using AMORE; (a) the generated Cartesian grid, geometry defects: ① gap, ② invalid manifold, ③ overlap; (b) straight line Δs- segmentation of the
boundary, the geometry defects are removed, ① Δs1- segmentation, ② Δs2- segmentation, ④ Δs3- segmentation; (c) internal cells retained and converted to 4-node
regular finite elements; (d) overlapping and coupling finite elements are used to fill empty space.
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nodes L and M influence the interpolation established for node I, si-
milarly for nodes L and M, and associate with each node I, L, and M not
just a single degree of freedom but a polynomial or other function, like
in the finite element method using covers [21].

Let us assume that we have identified a weight function x( )J
I which

“gives a weight from node J to node I”, then we can write

=
=

x u( )I
J I L M

J
I

J
, , (2a)

with the uJ degrees of freedom given by the coefficients aJn in
= pu aJ n Jn (2b)

where we imply the summation convention over the index n . Assuming
only polynomial terms are used, pn denotes the nth polynomial term in
the vector

= …x y x xyp [1 ]T 2 (3)

where (x,y) corresponds to a local coordinate system at node J, and we
non-dimensionalize the terms (using suitable length factors) in order to

prevent ill-conditioning of the governing finite element equilibrium
equations.

We note that in Eq. (2a) the uJ are the degrees of freedom at node J
and in Eq. (2b) these are then given by the aJn. Hence, in general, the
degrees of freedom correspond to the terms in the polynomial of Eq. (3)
and if in Eq. (3) only the constant term (=1) is used we have only the
traditional degrees of freedom at the node.

While not chosen yet, we recognize that for an effective solution, J
I

should involve only polynomials over the overlap region (like in tra-
ditional finite element analysis) and interpolate the weight function to
have stability and good accuracy. To this aim, we introduce additional
mid-side “fictitious” nodes on the domain I-L-M, see Fig. 7, and use the
shape functions ĥi of the traditional 6-node element

=
=

ĥ ˆ
J
I

i
i Ji

I

1

6

(4)

where ˆ
Ji
I is the “nodal value at node i” of the weight function used. It is

important to note that there are no nodal displacement degrees of
freedom at the fictitious mid-side nodes and that these nodes are only
used to interpolate the weight function.

Hence we finally have for the 3-node triangular element I-L-M

=
=

hx u( ) ˆ ˆ
I

J I L M
i Ji

I J
, , (5)

where the summation over i is implied.
Similarly we also have

=
=

hx u( ) ˆ ˆ
L

J I L M
i Ji

L J
, , (6)

=
=

hx u( ) ˆ ˆ
M

J I L M
i Ji

M J
, , (7)

Hence u(x) for the 3-node element (the domain overlapped by the 3
polygonal elements, see Fig. 6) is thus given by Eq. (1).

An important ingredient in the formulation is the weight function
used. We have various choices for a weight function and it is still an
open question which function is optimal. So far we have employed the
Shepard function like used in the method of finite spheres and

Fig. 6. Triangularization and overlapping elements; (a) triangularization; (b)
overlapping elements, the overlap region is shaded, capital letters denote the
centers of the polygonal elements.

Fig. 7. Interpolation over the overlap domain; (a) physical nodes I, L, M (or 1,
2, 3) and fictitious nodes 4, 5, 6 for the overlap region; (b) traditional inter-
polation function of 6-node element corresponding to node 1.
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interpolate the function using the values given in Table 1,

= W
W

x x
x

ˆ ( ) ( )
( )Ji

I J

K K
at position i, Xi (8)

where the summation is over the appropriate K (discussed below, see
Table 1),WJ is a weight function for node J and is chosen to be, see Fig. 8,

= +
>

W s s s s
s

x( ) 1 6 8 3 (0 1)
0 ( 1)J

2 3 4

(9)

with s given by

=s d
r
J

J (10)

where dJ denotes the distance between node J and point x=(x, y), rJ is a
chosen radius for node J selected to contain the polygonal element corre-
sponding to node J and α is a constant. We choose rJ to be just large enough
to have the circle contain the complete polygonal element. The solution will
depend on the value of α, for example, as αrJ becomes large and approaches
infinity, the scheme reduces to the finite element method with interpolation
covers [21], a method we found not as effective in the problems solved in
Ref. [14]. However, for different elements and different problem solutions,
the use of interpolation covers may be effective. In our solutions we used
α=1, but more research is needed to establish rules for an “overall op-
timal” value of α and possibly find other more effective weight functions.

Hence, in essence, we use disks, like in the method of finite spheres,
at each of the three corner nodes of the triangular 3-node element, and
each of the disks has the polynomial degrees of freedom given in
Eqs. (2a), (2b), and (3). In Eq. (8), the superscript denotes for which
traditional nodal interpolation the right-hand side is evaluated and the
subscript J denotes the node (center) of the Shepard function.

Important requirements for the functions defined in Eqs. (5)–(7) are
that the functions be continuous with the functions of the neighboring
triangular elements and that the sum of the functions is equal to 1. If
these requirements are fulfilled, the rigid body mode criterion is sa-
tisfied and the patch tests are passed (provided, of course, the nodal
polynomial degrees of freedom contain the patch test functions to be
represented). We satisfy these requirements for the following reasons.

Consider the element in Fig. 6 and the function hI I(x) for node I
with Table 1. Compatibility over the sides I-L and I-M is provided be-
cause only the disks on nodes I and L for side I-L and nodes I and M for
side I-M are used respectively. Compatibility over the side L-M is pro-
vided because the function hI is zero on that edge. Further, we note that
the functions for I with the nodal values given in Table 1(a) sum to
1.0. Analogous reasoning is used when considering nodes L and M.
Hence compatibility is satisfied, the right-hand sides in Eqs. (5)–(7)
with unit displacements sum each to 1, and since hI+ hL+ hM=1 and
the polynomial degrees of freedom are used at the nodes, we satisfy all
criteria for convergence of the overlapping finite element scheme.

We also see that since the functions I(x), L(x), M(x) each contain
the assumed polynomial of Eq. (3) as degrees of freedom (see
Eqs. (5)–(7)), this polynomial can be represented irrespective of the
geometric distortions of the 3-node element. It is for this reason that the
3-node element is distortion-insensitive, which is quite different from
the behavior of the traditional higher-order finite elements [1]. How-
ever, while this property of the 3-node element is very valuable, of
course, the solution results will somewhat change as the element geo-
metry is changed because, simply, the polynomials used are then as-
sumed to represent the solution over different spatial regions. We give
some results in Section 4 and refer to Refs. [11–16].

To obtain insight into the interpolation used and a compact form,
we expand Eq. (1) using the above relations to obtain, with the sum-
mation over the index i,

= + +

+ + +

+ + +

h h h h

h h h h

h h h h

u x u u u

u u u

u u u

( ) ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

I i Ii
I I i Li

I L i Mi
I M

L i Ii
L I i Li

L L i Mi
L M

M i Ii
M I i Li

M L i Mi
M M

(11)

where the term in the parenthesis multiplying hI gives all the “disk (or

Table 1
Nodal values used for the quadratic interpolation of the Shepard functions with
centers at nodes I= 1, L= 2, M=3. The node numbering is given in Fig. 7.

Nodes 1 2 3 4 5 6

ˆ
i1

1 1 0 0 + |W
W W X

1
1 2 4 + + |W

W W W X
1

1 2 3 5 + |W
W W X

1
1 3 6

ˆ
i2

1 0 1 0 + |W
W W X

2
1 2 4 + + |W

W W W X
2

1 2 3 5 0

ˆ
i3

1 0 0 1 0 + + |W
W W W X

3
1 2 3 5 + |W

W W X
3

1 3 6

(a) For I

Nodes 1 2 3 4 5 6
ˆ

i1
2 1 0 0 + |W

W W X
1

1 2 4 0 + + |W
W W W X

1
1 2 3 6

ˆ
i2

2 0 1 0 + |W
W W X

2
1 2 4 + |W

W W X
2

2 3 5 + + |W
W W W X

2
1 2 3 6

ˆ
i3

2 0 0 1 0 + |W
W W X

3
2 3 5 + + |W

W W W X
3

1 2 3 6

(b) For L

Nodes 1 2 3 4 5 6
ˆ

i1
3 1 0 0 + + |W

W W W X
1

1 2 3 4 0 + |W
W W X

1
1 3 6

ˆ
i2

3 0 1 0 + + |W
W W W X

2
1 2 3 4 + |W

W W X
2

2 3 5 0

ˆ
i3

3 0 0 1 + + |W
W W W X

3
1 2 3 4 + |W

W W X
3

2 3 5 + |W
W W X

3
1 3 6

(c) For M

Fig. 8. Weight functions for nodes I and M (shown schematically).

Fig. 9. Four 9-noded straight-sided polygonal elements overlap on region I-J-L-
M. Each 9-node element consists of four 4-node elements.
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sphere) contributions” from nodes I, L, Mwith the degrees of freedom at
these nodes, and similarly for the interpolation functions hL and hM.

Considering this equation, we can now see that the complete in-
terpolation can be written in terms of the degrees of freedom at each of
the three nodes I, L, M as

= + +u x u u u( ) I I L L M M (12)

and comparing the above equations we have

= + +

= + +

= + +

h h h h h h

h h h h h h

h h h h h h

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

I I i Ii
I L i Ii

L M i Ii
M

L I i Li
I L i Li

L M i Li
M

M I i Mi
I L i Mi

L M i Mi
M (13)

where we note that I only involves the disk (or sphere) at node I, as is
necessary because only the degrees of freedom at node I are considered,
and similarly for L and M. However, the interpolation function cor-
responding to node I, I , has contributions from the standard hI with a
weight obtained by the disk at node I, and has in addition contributions
from the other two interpolation functions, hL and hM with weights
obtained from the disk at node I but evaluated for nodes L and M (for
Land M, respectively).
Hence, we can give the following summary observations regarding

the interpolation functions in Eq. (12).

• Firstly, the sum of the interpolations ĥ ˆi Ni
I , summing over N= I, L,

M is equal to 1. The same holds when I is replaced by L and M, see
Table 1. Thus the 3-node element satisfies the rigid body mode
criterion. The element also passes the patch tests given that the
nodal degrees of freedom contain the linear polynomial terms.
• Secondly, since I is given by hI times a factor and hL and hM times
their factors we expect the element behavior to be quite robust with
respect to element geometric distortions. In addition, the degrees of
freedom given by polynomials at each of the three element nodes
render the element distortion-insensitive.

Fig. 10. Coupling region; 3-node and 4-node regular elements (in blue, the element only has regular finite element nodes), 3-node coupling elements (in green, the
element has at least one overlapping element node), 3-node overlap elements (in yellow, the element has only overlapping element nodes).

Fig. 11. Analysis of a cantilever; (a) beam problem considered, with traction p, total applied force= 1; (b) meshes used (1× 6 element meshes); the refined meshes
are obtained by subdividing the side lengths of the elements into equal lengths.

Table 2
Calculated tip deflections in beam problem using 4-node elements, the beam
reference solution including shear deformations is 0.1081. The number of de-
grees-of-freedom (dofs) used is given in parentheses. The radii of the disks were
chosen to just contain the polygonal element.

1×6 Mesh 3×18 Mesh 4×24 Mesh

Quadratic overlapping element
Rectangular 0.1065 (156 dofs) – –
Parallelogram 0.1060 (156 dofs) – –
Trapezoidal 0.1057 (156 dofs) – –

Incompatible modes element [1]
Rectangular 0.1073 (24 dofs) 0.1076 (144 dofs) 0.1077 (240 dofs)
Parallelogram 0.0675 (24 dofs) 0.1056 (144 dofs) 0.1072 (240 dofs)
Trapezoidal 0.0049 (24 dofs) 0.0964 (144 dofs) 0.1044 (240 dofs)

Traditional 4-node element
Rectangular 0.0101 (24 dofs) – 0.0671 (240 dofs)
Parallelogram 0.0037 (24 dofs) – 0.0395 (240 dofs)
Trapezoidal 0.0029 (24 dofs) – 0.0502 (240 dofs)
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• Thirdly, as the radii rJ of the interpolated Shepard functions increase
(or α in Eq. (10) increases) I approaches hI. Hence the interpolation
scheme reduces to the method using covers [21] and if in addition
the polynomial terms pn in Eq. (3) only consist of the constant term,
the scheme reduces to the traditional finite element interpolations.
However, for the complete mesh to reduce to the traditional finite
element discretization, also the interpolations and degrees of
freedom at the boundaries need to do so.

3.1.2. Quadrilateral elements by the overlapping of polygonal elements
Quadrilateral overlapped regions or elements can be formulated in a

similar manner as the triangular elements [16].
Referring to Fig. 9 we see that four 9-noded polygonal elements,

made each up of four 4-node elements, overlap on the element I-J-L-M.
To establish the interpolation functions for this element we proceed as
for the triangular case.

We also use disks (with Shepard functions) centered at each node to
establish the weight functions J

I , with I and J now for all 4 nodes of the
element. We interpolate the Shepard functions using the traditional
interpolation functions of the 8-node element and can thus construct
tables equivalent to Table 1, and establish the interpolation functions
I, J, L, M to obtain [16]

= + + +u x u u u u( ) I I J J L L M M (14)

The same observations hold for the quadrilateral element as for the
3-node element discussed above.

3.2. The coupling to regular (traditional) elements

An important ingredient of the AMORE paradigm is the coupling of
the regular and overlapping elements. The interpolation functions for
the coupling elements are obtained using the above concepts.

Considering an element that couples regular and overlapping finite
elements, such as the element with nodes 1,2,3 in the coupling region of
Fig. 10, the displacements are given as

= + +h hu x u( )
I

I
N

N
K

K
N

K
J

J
N

(15)

with

= +h hu a
J

J J
K

K K1
(16)

where we now use the subscripts to indicate a summation, I and J sum
over all “usual” finite element nodes of the element (nodes with only
the traditional finite element degrees of freedom in uJ), the hM with any
M is a regular shape function of the traditional 3-node element, N and K
sum over all nodes of the element that couple into overlapping elements
(nodes with polynomials as degrees of freedom in uK), and we have
(since Eq. (4) holds)

+ = 1
K

K
N

J
J
N

(17)

Also aK1 is the solution vector of node K corresponding to only the
first entries in uK (these are the traditional finite element degrees of
freedom) . Of course, the L

M for any M, L are interpolated as in Eq. (4).
The above equations are applicable to triangular and quadrilateral

elements. For example, for the coupling element shown in Fig. 10, we
have I=3, J=3, K=1,2 and N=1,2 and we note that node 3 has
only the usual degrees of freedom whereas nodes 1 and 2 have the
degrees of freedom with polynomials. Fig. 10 also illustrates that any
node to which a regular element is attached is a “regular node” and is
only assigned the regular degrees of freedom. The other nodes are
“overlapping element nodes” and have polynomials as degrees of

Fig. 12. Stress yy
h and absolute error | |yy

h
yy
ref ; (a) 4-node regular finite elements, 4,986 degrees of freedom; (b) solution using AMORE scheme, 2032 degrees of

freedom.

Fig. 13. Pre-stressed membrane considered for wave propagation analysis; a
Ricker wavelet point load is applied at the center.
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freedom.
We note that with this interpolation we also have corresponding to

this region a small bandwidth coupling nodes.
To show that with this interpolation the rigid body mode criterion

and patch tests are satisfied we see from Eqs. (15) and (16) that for the
triangular element (assuming pn in Eq. (2b) contains the linear terms)

= × + ×h linear terms h linear termsu x( ) ( ) ( )
I

I
N

N
(18)

where we used Eq. (17) (see Table 1). Since also + =h h 1I I N N we
realize that the displacement interpolation contains the linear terms
irrespective of any (reasonable) element geometric distortion.

Whenever an element with a regular node has at least one node of
an overlapping element (that is, at least one node with the degrees of
freedom of a polynomial), the element is a coupling element.
Considering the case of an element with no regular finite element node,
that is, an element that does not couple into a regular finite element, the
summations involving I and J in Eq. (15) are not included and the in-
terpolation reduces to Eq. (11) and hence Eq. (12). On the other hand, if
we consider an element that does not couple into an overlapping ele-
ment, the summations involving N and K in Eqs. (15) and (16) are not
included and the equations reduce to the interpolation of the traditional
3-node element.

3.3. Displacement and force boundary conditions

The force (natural) boundary conditions are imposed as usual in
finite element analysis, that is, the applied concentrated forces and
tractions are taken into the right-hand side load vector of the governing
finite element equations [1].

However, some simple special considerations are needed for the
displacement (essential) boundary conditions. A direct way to proceed
is to use the approach in the finite element method with interpolation
covers [21]. For a node J on the boundary with displacement boundary
conditions, we simply align the coordinate axes with the tangential and
normal directions to the boundary and appropriately impose in uJ the
boundary condition. Hence if, for example, the displacement in the
tangential direction is zero, then only the contributions corresponding
to the normal direction would be used and be free in uJ.

4. Illustrative analyses

In our research we tested the scheme in 2D analyses for its effec-
tiveness in establishing the governing equations and their solution, and
found that the scheme is quite effective regarding the accuracy reached
for a reasonable computational effort. Of course, the meshing effort is
much reduced. Only preliminary studies of 3D analyses are given in
Ref. [14], but based on the 2D and 3D solutions obtained we expect that
the procedure is also effective in 3D analyses.

We should recall that the interpolations only involve polynomials
and hence the required numerical integrations to obtain the governing
matrices only involve a small fraction of the computational effort used
in solving the finite element equations, see Ref. [14].

4.1. Static solutions

We consider the cantilever problem with the meshes given in
Fig. 11. The problem was proposed in Ref. [22]. The results in Table 2
show that the new quadrilateral element is quite effective, even when
the trapezoidal elements are used. Since the element is displacement-
based, some locking needs to be expected when the beam is thin, and
the MITC procedure might be used to improve the element for such
analyses.

Additional solutions for testing the elements discussed above, in-
cluding convergence studies, are given in Refs. [12–14,16].

To illustrate the AMORE scheme, we solve the cantilever problem
mentioned in Section 2 and described in Figs. 3–5. Fig. 12 shows some
stress results obtained including a comparison with the results calcu-
lated using a rather fine mesh of 4-node traditional elements. We see
that although the AMORE mesh is coarser (note the difference in the
number of degrees of freedom), smoother stress results are obtained.
The efforts to establish and solve the governing equations using the
AMORE scheme are about the same as in the traditional finite element
solution [14].

4.2. Wave propagation solutions

The accurate analysis of wave propagation problems presents sig-
nificant difficulties. The numerical dispersion (period elongation) and
attenuation (amplitude decay) errors can be severe due to the mesh and
time integration scheme used. The time step size Δt for a “given element

Fig. 14. Meshes used for analysis of pre-stressed membrane; because of symmetry only one quarter of the structure is considered.
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size Δx” is usually selected considering the CFL number

=CFL c t x/ (19)

where c is the (analytical) wave speed. The mathematical analysis of a
1D wave propagation problem shows that, for explicit and implicit di-
rect integration schemes, there is an optimal CFL number for which the
error of solution is minimum. For a smaller CFL number the use of an
explicit or implicit scheme gives larger errors and for a larger CFL
number an explicit scheme is usually unstable whereas the use of an

implicit scheme gives larger errors. In the analyses of 2D or 3D pro-
blems, the meshes need to be uniform and yet numerical dispersion and
attenuation errors occur because the “effective element size” varies
with the direction considered in the mesh. Furthermore, since the wave
speed affects the CFL number, problems containing different waves and
velocities are difficult to solve accurately using traditional finite ele-
ments.

We found that the use of overlapping finite elements is providing a
valuable avenue to reach better solution accuracy. For wave propaga-
tion solutions, we use only overlapping finite elements in the mesh and
introduce in addition to the usual polynomial terms in Eq. (3) also
degrees of freedom corresponding to trigonometric functions [15,23].

The solution of a prestressed membrane subjected to a point load at
its center is addressed in Figs. 13 to 16, where it is seen that excellent
results are obtained [15]. For this solution we employed a structured
mesh and an unstructured mesh, see Fig. 14. In the interpolations, Eqs.
(2) and (3), sine and cosine functions with one wave length over twice
the element size h, defined in Fig. 14, are embedded. The element is
labeled as OFE-TRI1, and for the time integration the Bathe implicit
scheme has been used [1].

Figs. 17 and 18 show an additional solution of a prestressed mem-
brane with holes. For this analysis, we use the AMORE scheme and
because of symmetry, only one quarter of the domain (as for the
membrane problem above) needs to be considered in the analysis. Good
analysis results have been obtained [15].

The important findings are that with a decrease of the CFL number
the solution results improve and the accuracy of solutions is almost the
same in any direction of the (reasonable) meshes used, even when
distorted elements are employed. Table 3 gives the computational effort
which is also quite reasonable, see Refs. [14,15]. The solution times are
clearly small, but unfortunately no comparison with the traditional fi-
nite element method is given because whatever reasonable mesh we
use, the solution errors with the traditional finite element schemes are
too large. These solution times should not be used for a comparison.

Additional numerical solutions are given in Ref. [15]. These ex-
cellent solution qualities for a reasonable computational effort are not

Fig. 15. Contour plots of displacement distributions of the membrane at
t=0.95s calculated using the structured mesh (h=0.03125m) when
CFL= 0.5, 0.25, 0.125.

Fig. 16. Displacement distributions of the membrane at t=0.95s calculated
using the unstructured mesh (h=0.03125m); (a) along horizontal axis with
decreasing CFL number; (b) along various directions when CFL= 0.125.
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seen using traditional finite elements [15,23] or finite spheres [24]
when these are supplemented with degrees of freedom for the trigo-
nometric functions.

5. Observations and perspectives

Considering the AMORE paradigm we can identify some important
attributes and challenges.

The meshing, see Section 2 and Figs. 1 and 2, can be automatically

carried out in a fast computational process. Indeed, the scheme lends
itself to be used by a designer and hence there is the potential that the
analysis process is moved into design environments.

This attribute is deemed to be a major step towards more use of
finite element analysis in early design considerations and structural
optimizations in a design process. A designer may run the analysis
software used simultaneously on multiple computers and perform op-
timizations of the design using detailed finite element analysis results.

The basic reason why the meshing is effective is that we couple

Fig. 17. 2D scalar wave propagation in a pre-stressed membrane with holes; problem description and the mesh used; a Ricker wavelet point load is applied at the
center.

Fig. 18. Snapshots of displacement distributions of the membrane with circular holes at various observation times calculated using the OFE-TRI1 scheme;
CFL= 0.125.
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undistorted regular elements in uniform meshes, easily specified, with
overlapping elements that are only generated where needed. The reg-
ular elements perform well because they are geometrically undistorted
and the overlapping elements, while quite distorted, perform well be-
cause they are distortion-insensitive.

The fact that the overlapping elements are distortion-insensitive
may also be important in dynamic analyses, notably, in the solution of
wave propagations, to obtain improved solutions. We obtained en-
couraging results but further studies are needed.

Specific CAD functions are not used in the finite element formula-
tion and hence, in principle, the AMORE scheme can be used to analyze
geometries in whichever way these have been digitized. This aspect
should be further explored in research.

While we focused here on the solution of 2D problems in the linear
analyses of solids, the avenue of analysis is also promising for the linear
analysis of shells and 3D solids, and for nonlinear analyses—but sig-
nificant research is still required to fully exploit the potential of the
AMORE paradigm.

The concepts presented above are directly applicable, but we need
to study the locking behavior in the analyses of plates and shells and in
the analyses of incompressible media. It will be valuable to identify
whether and in how far mixed interpolation is needed in the formula-
tion of overlapping elements.

For the 3D analyses of solids, the convergence behavior and com-
putational efficiency using various overlapping elements needs to be
established in depth.

In large deformation analyses, the geometry of the elements can
change significantly in certain regions of the domain, and the use of
overlapping elements in such regions could be effective.

Considering the analysis of contact problems, in static and dynamic
solutions, the use of overlapping elements may be effective but research
is needed to establish the effect of the new interpolation functions. A
particular attractive feature is that the overlapping elements need not
be used to discretize the complete domain of analysis; traditional ele-
ments may be used in contact regions.

Furthermore, it would be valuable to study whether and in how
much the AMORE paradigm could enhance the meshing and compu-
tational schemes for the solutions of fluid flow, electro-magnetic and
multi-physics problems.

For all these analysis cases, it would be most valuable to pursue
mathematical analyses to obtain deeper insights regarding the dis-
cretizations used. Considering applications in engineering practice, also
an efficient workflow must be established when complex geometries of
multiple parts shall be analyzed using the AMORE scheme.

6. Concluding remarks

We reviewed in this paper the AMORE paradigm and the current
state in our developments of overlapping finite elements.

The key to the success of the AMORE paradigm is the use of over-
lapping elements. Ideally, “general” spheres (disks in 2D analyses) and
brick elements (quadrilateral elements in 2D analyses) would be
available as overlapping elements, like displayed in Fig. 1. However, to
achieve such generality more research is needed.

Therefore, to reach already a practical procedure, we have focused

on using the concepts of the method of finite spheres together with
traditional finite element interpolations to develop new 3-node and 4-
node elements for 2D analyses. These elements are a result of the
overlapping of polygonal elements. The same procedure can also be
used to formulate 3D elements. We aimed to give the formulations in a
transparent manner with novel insight.

While we focused in this paper on the use of AMORE in the CAD
process, the scheme is equally applicable to the finite element analysis
of 3D computerized scans like used in the medical and building in-
dustries, and in terrestrial scanning, see for example Refs. [25,26]. The
reason for this direct applicability of AMORE is that specific CAD
functions are not used in the finite element formulation, the geometry
can be given in various ways, and regular and overlapping elements are
used for a finite element analysis.

Based on our experience in the use of AMORE, we can conjecture
that there is great potential for use of the AMORE paradigm in practi-
cally all areas of finite element analyses. However, much research needs
to still be undertaken to fully harvest the full potential of the AMORE
scheme.
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